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Abstract. A network is considered, which is modelled by a system of ordinary differential equations. The 

dynamics of a network depends on the attracting sets in a phase space. The problem of control and management 

of this network is in a focus of our study. The specific case is considered, where attractors are periodic trajectories. 

We provide the way of controlling the network by changing of a certain group of parameters. The numerical 

approach combined with the analytical solutions is used. As a by-product, the existence of multiple periodic 

solutions is proved. They are constructed explicitly for a specific three-dimensional system. Problems of control 

and management of systems of this kind are challenging issues in the theory of genetic networks.  
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Introduction 

We would like to start with the citation “Scientists aim to understand, whereas engineers aim to 

modify and control” [1]. We do hope that in our short remark both “objectives come together in the 

context of genomic” regulatory networks (GRN in short). Nonlinear dynamical processes are often at 

the centre of the study in natural and engineering systems. It was pointed out [2] that in spite of 

significant progress in understanding and analysing large complex systems the problems of managing 

and control of such systems remain an outstanding challenge in interdisciplinary research. The principles 

of linear controllability [3] in general are not applicable to nonlinear dynamical networks. The linear 

theory defines that the network system is controllable if it is possible to drive the system from an 

arbitrary initial state to any final state in finite time. For nonlinear systems, control and management 

generally need to be specific and system dependent [2]. In this work the scheme of restricted control 

over the network, that have multiple stable attractors, was discussed. The network taken for the study is 

a realistic biological network, “T cells in large granular lymphocyte leukaemia associated with blood 

cancer”. A network model considered in [2], contains 60 nodes and 195 regulatory edges. It was found 

that this network has three attractors, of which two correspond to two distinct cancerous states (denoted 

as C1 and C2) and one is associated with the normal state (denoted as N). Forty eight edges (connections) 

from the cancerous states to the normal one were discovered. The proper selection of the respective forty 

eight parameters can drive the system to the normal state. The existence of needed parameter 

perturbation was acknowledged. The attractor network was considered and the main proposition was to 

arrange experimental adjustment of parameters in order to achieve the required goal.  

We consider below relatively simple model of three element GRN, which is described by the system 

or ordinary differential equations [4; 5]. 

 

{
 
 

 
 
𝑑𝑥1

𝑑𝑡
 =  

1

1 + 𝑒  
 −𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤12𝑥2−𝜃1)

− 𝑣1𝑥1,
 

𝑑𝑥2

𝑑𝑡
 =  

1

1 + 𝑒  
 −𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3−𝜃2)

− 𝑣2𝑥2,

𝑑𝑥3

𝑑𝑡
 =  

1

1 + 𝑒  
 −𝜇3(𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3−𝜃2)

− 𝑣3𝑥3,

 (1) 

where  µ, θ and ν – parameters,  

 wij – elements of the regulatory matrix. 

 𝑊 =  (

𝑤11 𝑤12 𝑤13
𝑤21 𝑤22 𝑤23
𝑤31 𝑤32 𝑤33

).  (2) 

The vector x(t) = col(x1(t), x2(t), x3(t)) describes the current state of a network. The trajectory  

{x(t): t  t0, x(t0) = x0} describes evolution of the state of a network, which satisfies the initial condition 

x(t0) = x0. The nonlinearity in (1) is represented by a sigmoidal function  
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 𝑓(𝑧) =  
1

1 + 𝑒−𝜇𝑧
.  

This function monotonically increases from 0 to 1 as the argument z changes from − to + . 

Systems of that type are used in the theory of neural networks [4; 5], telecommunication networks [6] 

and genomic networks [2; 6; 7]. The main problem considering these type systems, is description of 

attractors, their dependence on parameters, control and management. The mathematical problems 

paralleling the above mentioned are: description and classification of possible attractors, clarification 

and roles of groups of parameters, behaviour of trajectories under the change of adjustable parameters 

and for different types of the regulation W. For practical purposes the structure of the phase space should 

be known in terms of various parameters.  

One of our goals is to show how knowledge of the structure of the phase space can serve to manage 

and control the network. For this, we took our motivation from the work [2], where the authors had 

combined the efforts of biologists and mathematicians to clarify the situation. Namely, the reaction of 

the genomic network to progressing of lymphocyte leukaemia associated with blood cancer is 

considered and the ways of changing the situation are discussed. Generally, the disease state is identified 

with the attractive critical point of the system. The trajectories that are in a basin of attraction, naturally 

tend to this equilibrium. To redirect the trajectory to a normal state. Something should be done. This 

something can be expressed in terms of tuning the system using adjustable parameters. In our example 

we use theta parameters to control the system. Our analysis is mainly geometrical, using the zero 

isoclines (nullclines) of the system. We can move nullclines by changing θ, thus eliminating the bad 

attractor for a period of time and waiting for the vector x(t) to enter the basin of attraction of needed 

attractor. This is our scheme and plan of action in short. 

Another aspect of our treatment is usage of attractors that are not critical points. The specific feature 

of systems like (1) is that nullclines meet only in a bounded domain G, which is invariant with respect 

to the system (1). Therefore, all attractors are in G and every critical point can be in G only. In our 

previous communication [8] we emphasized the role of the Andronov – Hopf bifurcation in emergency 

of periodic trajectories for 2-dimensional systems.  

We show how three periodic trajectories can appear in three-dimensional (3D in short) system (1). 

We examine the behaviour of solutions and show that two of periodic solutions are stable limit cycles, 

which attract almost all the trajectories in G. We show what happens if the regulatory matrix changes 

its structure and the system (1) becomes coupled. Our study has connections with papers [9-12], where 

similar problems were studied. The novelty of the current paper is showing how periodic solutions can 

appear in 3D system and what are the conditions for their existence. The main feature is that we propose 

the method of controlling the system by changing θ-parameters. 

Materials and methods 

Our consideration is mainly geometrical. All processes of interest to us take place in a bounded 

parallelepiped G and our main intent is to use the isocline method for understanding and managing the 

system. The nullclines of system (1) are given by the equations 

 

{
 
 

 
 𝑥1 =  

1

𝑣1
⋅

1

1 + 𝑒  
 −𝜇1(𝑤11𝑥1 + 𝑤12𝑥2 + 𝑤12𝑥2−𝜃1)

 ,
 

𝑥2 =  
1

𝑣2
⋅

1

1 + 𝑒  
 −𝜇2(𝑤21𝑥1 + 𝑤22𝑥2 + 𝑤23𝑥3−𝜃2)

,

𝑥3 =  
1

3
⋅

1

1 + 𝑒  
 −𝜇3(𝑤31𝑥1 + 𝑤32𝑥2 + 𝑤33𝑥3−𝜃3)

.

 (3) 

It follows from (3) that the first nullcline is in the set  

 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥1 <  
1

𝑣1
, (𝑥2, 𝑥3) ∈ 𝑅

2},  

the second nullcline is in the set  

 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥2 <  
1

𝑣2
, (𝑥1, 𝑥3) ∈ 𝑅

2},  

and the third one is in the set  
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 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥3 <  
1

𝑣3
, (𝑥1, 𝑥2) ∈ 𝑅

2}.  

Therefore, all critical points are located in the open parallelepiped  

 {(𝑥1, 𝑥2, 𝑥3): 0 <  𝑥1 <  
1

𝑣1
, 0 <  𝑥2 <  

1

𝑣2
, 0 <  𝑥3 <  

1

𝑣3
}  =  : 𝐺.  

There exists at least one critical point. 

The type of a critical point can be detected in a standard way, using the linearized system and 

analyzing the characteristic equation.  

3D periodic solutions 

Set the regulatory matrix to  

 𝑊 =  (
𝑤11 𝑤12 0
𝑤21 𝑤22 0
0 0 𝑤33

).  (4) 

The system (1) is then uncoupled and consists of the 2D (two-dimensional) system 

 

{
 

 
𝒅𝒙𝟏

𝒅𝒕
 =  

𝟏

𝟏 + 𝒆 
 −𝝁𝟏(𝒘𝟏𝟏𝒙𝟏 + 𝒘𝟏𝟐𝒙𝟐−𝜽𝟏)

− 𝒗𝟏𝒙𝟏,

 
𝒅𝒙𝟐

𝒅𝒕
 =  

𝟏

𝟏 + 𝒆 
 −𝝁𝟐(𝒘𝟐𝟏𝒙𝟏 + 𝒘𝟐𝟐𝒙𝟐−𝜽𝟐)

− 𝒗𝟐𝒙𝟐,
 (5) 

and a single equation 

 
𝒅𝒙𝟑

𝒅𝒕
 =  

𝟏

𝟏 + 𝒆 
 −𝝁𝟑(𝒘𝟑𝟑𝒙𝟑−𝜽𝟑)

− 𝒗𝟑𝒙𝟑 (6) 

The third nullcline is defined by the equation  

 𝒙𝟑 =  
𝟏

𝒗𝟑
⋅

𝟏

𝟏 + 𝒆 
 −𝝁𝟑(𝒘𝟑𝟑𝒙𝟑−𝜽𝟑)

, (7) 

which may have up to three roots. If this is the case (we suppose it is), then the third nullcline is just a 

union of three parallel planes in the domain Q. Suppose that the system (5) has a stable limit cycle that 

have appeared as a result of Andronov – Hopf bifurcation like it was shown in [8].  

For specific regulatory matrices of the form w11 = w22 = k > 0, w12 = 2, w21 = −2 sufficiently small 

nullclines intersect only once, and the respective critical point is stable focus. Under the increase of k 

the single critical point changes to unstable focus and a periodic solution emerges. So, the periodic 

solutions that are used below in 3D examples are detected not numerically only, but exist in accordance 

with theoretical considerations. Then all three nullclines are located as shown in Figure 1. 

 

Fig. 1. µ1 = µ2 = µ3 = 5, θ1 = 1.2, θ2 = −0.6, θ3 = 0.5, W = (
𝟏 𝟐 𝟎
−𝟐 𝟏 𝟎
𝟎 𝟎 𝟏

) 
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For these parameters the applicates of blue planes are z1 = 0.1448 (rounded), z2 = 0.5 (exact), 

z3 = 0.8552 (rounded). So, there are exactly three critical points p1, p2 and p3 at (0.536688, 0.346358, 

0.1448), (0.536688, 0.346358, 0.5), (0.536688, 0.346358, 0.8552), respectively. 

Linearization around these points provides us with the characteristic numbers λ given in Table 1. 

Table 1 

Characteristic numbers λ 

- λ 1 λ 2 λ3 

p1 -0.991643 0.18762 -2.37198 0.18762 + 2.37198 

p2 2.75 0.18762 -2.37198 0.18762 + 2.37198 

p3 -0.991643 0.18762 -2.37198 0.18762 + 2.37198 

There are three periodic solutions of the system (5), (6), lying in G and in the planes x3 = z1, x3 = z2, 

x3 = z3. This follows from our construction. Other solutions that are not in the middle plane (z2 = 0.5) 

tend to the upper or to the lower periodic solutions depicted in red. Solutions starting at the middle plane, 

tend to the middle periodic solution. It is generally unstable and is destroyed under small perturbation 

of the system (5), (6). 

 
 

Fig. 2. z1 = 0.1448, z2 = 0.5, z3 = 0.8552 Fig. 3. Red – periodic solution for z1 = 0.1448; 

black – trajectory of system (10), (11) with the 

initial conditions (0.8, 0.4, 0.45) 

  

Fig. 4. θ3 = 0.5 Fig. 5. θ3 = 0.45 

In Fig.4 and Fig.3 respectively three and one solutions are detected for the equation (7) which 

defines z-nullclines, plots are 

  
𝟏

𝒗𝟑
⋅

𝟏

𝟏 + 𝒆 
 −𝝁𝟑(𝒘𝟑𝟑𝒙𝟑−𝜽𝟑)

  

against x3. 
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Fig. 6. µ1 = µ2 = µ3 = 5, θ1 = 1.2, θ2 = -0.6, 

θ3 = 0.45, x3 = 0.908 

Fig. 7. Red – periodic solution for x3 = 0.908; 

black – trajectory of system (10), (11) with the 

initial conditions (0.8, 0.4, 0.45) 

We have changed θ3 from 0.5 to 0.45. Nullclines are now in Fig. 6. The trajectory with the initial 

conditions (0.8, 0.4, 0.45) goes to the periodic solution depicted in Fig. 7. After some finite time it enters 

basin of attraction of the upper periodic solution, depicted in Fig. 2, and after restoring the value θ3 = 0.5, 

the state of the system tends to the “normal” attractor. 

Conclusions 

Genetic engineering will be an effective way of treatment diseases of living organisms. Knowledge 

of principles and in any practical case details of specific gene networks is needed for successful 

treatment and management of GRN. Mathematical models, if adequately describing GRN, can provide 

useful material for experiments and studying. We have shown how the three-dimensional model can be 

controlled by a simple change of one of the parameters. It is possible to generalize results to high-

dimensional systems and networks, considering systems with 2n-dimensional regulatory matrices, 

containing low-dimensional blocks of the form (19). 

For the mathematical model (1) we have shown that: 1) 3D system (1) can have several periodic 

trajectories (two stable ones and one semi-stable); 2) 3D system (1) can have no stable (attractive) 

critical points (like the famous Lorenz system); 3) system (1) can be managed by changing parameters 

θi; 4) the attractor for system (1) can contain two periodic trajectories; 5) any trajectory, going to one of 

the attractive periodic regimes, can be redirected to another one by simple changing of θ1 or θ3.  

Generally, control and management for 3D systems is possible. Knowledge of critical points and 

basins of attraction of all attractors is needed for this.  
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